五月天堂网_免费看影片_1024手机看毛片_亚洲综合四区_男人的天堂影院_在线亚洲自拍

中培偉業(yè)IT資訊頻道
您現(xiàn)在的位置:首頁(yè) > IT資訊 > 學(xué)習(xí)交流 > Four Development Trends of Banking Data Architecture

Four Development Trends of Banking Data Architecture

2017-07-05 10:38:21 | 來(lái)源:中培企業(yè)IT培訓(xùn)網(wǎng)

Subscribe it by Click on the Blue words

Data is a kind of important information asset of banking industry. Banking industry is the earliest industry that our country establishes hierarchical data platforms. Because of the strong dependency on data, we always pay much attention to the construction of data platforms in banking industry. As for management, we set up special data management departments with the corresponding rules and regulations as well as workflows throughout business and IT after a long-term construction and development. As for technology, we have relatively mature management tools on data architectures, data standard, data quality and data. On the basis of this, we build a series of data applications like cockpit of management, automated unified statements, etc.

With the development of technology and analysis platforms of big data, we can summarize four directions in the development of banking data architecture:

 

Direction One: data quality is continuously promoted, which means that we continuously promote the construction of metadata-based data management.

Direction Two: analysis platforms of big data are constructed, which means that we expand the field of traditional data architecture to build analysis platforms of big data.

Direction Three: analysis of big data is applied, which means that we explore the application of big data analysis in the field of business, including digital portraits of users, precision marketing, risk management, etc.

Direction Four: stream-oriented computation is applied, which means that we explore the application of stream-oriented computation and the real-time monitoring of business activities and business sensitive index to reduce the risk of business operation.

◆  ◆  ◆  ◆  ◆  

01

Direction One

Continuously Deepen the Construction of Metadata-based Data Management

The construction of data architectures in banking industry is relatively perfect, but there are still some common problems. For example, it is difficult to implement data standards; data quality still needs to be promoted continuously; indicator calibers are inconformity.

Metadata clarifies the business implications of data, allowing communication in the same language without ambiguity among different business departments as well as business departments and technology departments. Metadata is the basis of data standards and data quality.

We have basically set up a set of data standards in banking industry, but it is difficult to implement data standards. The reason is that the construction of data standards is finished theoretically without the tools to implement, so that it cannot be shared or implemented. Besides, lack of management on data standards themselves makes them cannot effectively adapt to the development of new business.The solution is to standardize the data standards, which is convenient to query and use for demand analysis teams and the development teams. The implement of data standards should be started at the source of data generation, including the stages of requirements writing, requirements analysis and system development. At the same time, in this process, we should continuously validate and revise data standards, which means managing them, including timely revising, changing, adding and revoking, so that data standards can always be able to adapt to development requirements of new business.

Now data quality check is always carried out after data generation. Data check, however, should be expanded to the whole life cycle of data. In other words, we should start to check data quality and timely correct it before system data modeling and system being online.

We should continuously build metadata to unify calibers of indicators. Metadata-based data standards are the unified standards to important business subjects in the aspect of data. Therefore, a consensus needs to be reached among different business departments as well as business departments and IT departments to build data standards.

◆  ◆  ◆  ◆  ◆  

02

Direction Two:

Expand the Field of Traditional Data Architecture to Build Analysis Platforms of Big Data

In recent years, with the development of cloud computing, basic computing powerand the capability of analyzing models by using big data, it is possible to apply big data analysis models to the field of production.

Big data analysis models are expanded to the high-dimensional data with a large amount of information from the low-dimensional data with limited expressive power; they are developed to the strong generalization capability which is extensively effective from the weak generalization capability which is effective in a small scale; they are developed to complex models with strong expressive capability from simple models with weak expressive capability. We gradually explore applying big data analysis technology in the field of production in banking industry.

To build big data analysis platforms, we should elevate the current data passive-support business to data active-service business and make part of the business areas to reach the level of data innovation. Besides, we should integrate inside and outside information in banking industry and give full play to the advantages of new technology of big data to build unique and industry-leading intelligent data” analysis capabilities

 

◆  ◆  ◆  ◆  ◆  

03

Direction Three:

Explore the Application of Big Data Analysis in the Field of Busines

Big data analysis will be an important support for business in the future, which will bring great changes to operation models of business and IT. Although the application of big data analysis in the field of business is still at the exploratory stage, it is the key for banking industry to keep ahead.

In the future, we will build customer-centered digital strategy in banks, including digital portrait, product design and optimization, digital marketing and digital risk prevention. Thereinto, the strategy of digital portrait includes micro portrait of customer, digging of high net worth potential customers, multi-dimensional customer segmentation and waking up of dormant customers. The strategy of product design and optimization includes transboundary product development, product optimization and innovation as well as innovation of products. The strategy of digital marketing includes marketing planning and support, differentiated advertisement putting and precision marketing. The strategy of digital risk prevention includes evaluation of customer risk credit, evaluation of customer individuation, automatic valuation of collateral value and real-time anti-fraud.

 

◆  ◆  ◆  ◆  ◆  

04

Direction Four:

Explore Stream-oriented Computation and Real-time Business Monitoring to Reduce Business Risk

Traditional IT systems can only provide T+1 reports of statistic and analysis composed of simply summarized data. In current constantly changing marketing environment, faster response capability is needed in banking industry to give a quick response to requirements of customers and gain an advantage in fierce competition. Thereinto, it is very important to grasp real-time operation conditions of a variety of businesses, analyze business activities comprehensively and make targeted decisions. To finish the above works, we often need to stride over single business departments and IT application systems as well as have real-time data processing capabilities.

Platforms of stream-oriented computation provide capabilities of highly reliable, fault-tolerant and high-performance capture, process and computation to massive real-time events. Besides, as a kind of public capabilities, the capabilities can be provided for the requirements of real-time computing business scenarios in every system and they can provide capabilities of centralized and unified public support for real-time computation of every application system. Compared with traditional application systems, platforms of real-time events processing is massive, streaming and real-time computing models without limitation of department systems. In other words, with real-time and streaming computation, it can push display proactively, which are in line with the future trend of real-time processing.  

By using stream-oriented computation, we achieve the monitoring to business activities in banking industry, including financial indicators monitoring, business operation monitoring, real-time monitoring to online banks, business audit tointernal staffs and IT system risk management. After real-time, comprehensive and visualized understanding the current implement situation of a various of businesses, it can provide decision-making supports for business management and optimization of banking industry.


相關(guān)閱讀

主站蜘蛛池模板: 黄色片视频国产 | 午夜少妇性影院免费观看 | 青青操在线 | 国产毛片精品国产一区二区三区 | 狠狠狠色 | 亚洲精品久久久打桩机小说 | 好男人www社区| 毛片一级a| 久久久精品国产免费a片胖妇女 | 白丝av片| 商场女厕偷拍一区二区三区视频 | 欧美午夜在线视频 | 深夜成人在线观看 | 久久国产精品免费视频 | 国产毛片高清 | 香港经典三级av在在线观看 | 狠狠久久永久免费观看 | 黄色av免费 | 国产日韩免费视频 | 黄色草逼网站 | 中文字幕一区二区三区乱码视频 | 东北少妇xxxx | 日本人做爰大片免费网站 | 四虎海外永久 | 小兔子乖乖日本视频在线观看 | 日日爱999| 欧美FREESEX潮喷| 羞羞.av | 中文字幕乱码无码人妻系列蜜桃 | 日韩一二三区 | 在线免费观看污网站 | 分分操免费视频在线观看 | 精品久久久久久无码国产 | 亚洲午夜免费视频 | 少妇人妻中文字幕HD | 脱了我奶罩亲我奶头好舒服 | 欧美激情性国产欧美无遮挡 | 日本十八禁视频无遮挡尤物 | 日韩精品高清一区二区三区 | 亚洲性图一区二区 | 深夜A级毛片免费无码视频 娇小12~13高潮sex |