五月天堂网_免费看影片_1024手机看毛片_亚洲综合四区_男人的天堂影院_在线亚洲自拍

中培偉業IT資訊頻道
您現在的位置:首頁 > IT資訊 > 軟件研發 > 三種提高Python代碼性能的簡便方法

三種提高Python代碼性能的簡便方法

2020-08-03 17:03:13 | 來源:中培企業IT培訓網

在互聯網編程語言盛行的今天,Python是比較流行的編程語言之一。但很多程序員對于Python代碼性能的方法并不了解。今天這里主要為大家介紹三種提高Python代碼性能的簡便方法,即是一是基準,基準,基準、二是盡可能避免循環和三使用Cython編譯Python模塊三點內容。通過這三種方法,如果您想在Jupyter筆記本電腦中利用Cython,可以使用%% Cython魔術,最終以最小的編譯函數。

  1.基準,基準,基準

基準測試聽起來像是一個繁瑣的過程,但是如果您已經將工作代碼分為多個函數,則可以像在要分析的函數中添加裝飾器一樣簡單。

首先,讓我們安裝line_profiler,以便我們可以測量函數中每行代碼所花費的時間:

pip3 install line_profiler

這提供了一個裝飾器(@profile),可用于逐行對代碼中的任何函數進行基準測試。例如,假設我們有以下代碼:

#filename: test.py@profiledef sum_of_lists(ls):

'''Calculates the sum of an input list of lists'''

s = 0

for l in ls:

for val in l:

s += val

return s

#create a list of lists

smallrange = list(range(10000))

inlist = [smallrange, smallrange, smallrange, smallrange]#now sum them

list_sum = sum_of_lists(inlist)

print(list_sum)

這將在調用sum_of_lists函數時對其進行概要分析 -請注意函數定義上方的@profile裝飾器。

現在,我們可以通過執行以下操作來分析代碼:

python3 -m line_profiler test.py

這給了我們:

第5列顯示了在每一行上花費的運行時的百分比-這將使您指向最需要優化的代碼部分,因為這是花費大部分運行時的地方。

請記住,此基準測試庫具有大量開銷,但是它非常適合在代碼中查找弱點并將其替換為更有效率的東西。

要在Jupyter筆記本中運行line_profiler,請查看%% lprun magic命令。

  2.盡可能避免循環

在許多情況下,在python中使用map,list comprehensions或numpy.vectorize(通常是最快的)之類的操作而不是循環,可以在不進行大量工作的情況下顯著提高性能,因為這些操作在內部進行了優化。讓我們通過將嵌套循環替換為map和sum來稍微修改前面的示例:

#filename: test_map.pydef sum_of_lists_map(ls):

'''Calculates the sum of an input list of lists'''

return(sum(list(map(sum,ls))))#create a list of lists

smallrange = list(range(10000))

inlist = [smallrange,smallrange,smallrange,smallrange]#now sum them

list_sum = sum_of_lists_map(inlist)

print(list_sum)

讓我們將新地圖版本定時1000次,以了解它們與原始地圖相比的效果:

地圖版本比原始版本快6倍以上!

  3.使用Cython編譯Python模塊

如果您根本不想修改項目,但仍然希望免費獲得一些性能提升,則Cython是您的朋友。

盡管Cython不是通用的python C編譯器,但是Cython允許您將python模塊編譯為共享對象文件(.so),可以由您的主要python腳本加載。

為此,您將需要在計算機上安裝Cython以及C編譯器:

pip3 install cython

如果您使用的是Debian,則可以執行以下操作下載GCC:

sudo apt install gcc

讓我們將示例代碼分成2個文件,分別名為test_cython.py和test_module.pyx:

#filename: test_module.pyxdef sum_of_lists(ls):

'''Calculates the sum of an input list of lists'''

s = 0

for l in ls:

for val in l:

s += val

return s

我們的主文件必須從test_module.pyx文件導入此功能:

#filename: test_cython.pyfrom test_module import *#create a list of lists

smallrange = list(range(10000))

inlist = [smallrange,smallrange,smallrange,smallrange]#now sum them

list_sum = sum_of_lists(inlist)

print(list_sum)

現在讓我們定義一個setup.py文件來使用Cython編譯我們的模塊:

#filename: setup.pyfrom setuptools import setupfrom Cython.Build import cythonize

setup(

ext_modules = cythonize("test_module.pyx")

)

最后,是時候編譯我們的模塊了:

python3 setup.py build_ext --inplace

現在,通過對它們進行1000次計時,可以看到該版本與原始版本相比有何改進:

在這種情況下,Cython的速度比原始速度提高了近2倍,但這取決于您要優化的代碼類型。

以上即是關于三種提高Python代碼性能的簡便方法的全部內容,想了解更多關于Python的信息,請繼續關注中培信息。

主站蜘蛛池模板: 最新网站亚洲人成无码 | 最近中文字幕在线中文视频 | 九一国产在线 | 免费啪视频 | 欧美日韩在线免费 | 色又黄又爽18件免费网站 | 老司机一级毛片 | 寡妇bwwbwwbww | 免费成人深夜夜行网站视频 | 女人18毛片a级毛片一图片 | xvideos官网入口 | A毛片免费全部播放 | 亚欧aⅴ天堂在线 | jk喷水在线观看 | 98国产在线 | 日韩拔插拔插 | 最近中文大全免费视频播放 | 亚洲国产精品VA在线观看黑人 | 国产夫绿帽单男3p精品视频 | 日韩 中文字幕 亚洲 | 日本韩国一区二区三区视频 | 国产女高清在线看免费观看 | 国产五月婷 | 12一15性xxxx粉嫩国产 | 久久久无码精品无码国产人妻丝瓜 | 99久久精品费精品国产风间由美 | 国产精品色视频 | 无码AV无码免费一区二区 | 天天干天天操心 | 黄色视屏免费看 | 精品国产精品国产自在久国产 | 嫩草一区二区 | 国产农村1级毛片 | 中文字幕一区二区三三 | 中文视频免费在线播放 | 全黄一级裸片视频在线观看 | 日本麻豆视频 | 2024国产盗摄视频在线观看 | 日韩黄色 | 成 年 人 黄 色 软件 | 国产成a人片在线观看视频99 |